skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tarokh, Vahid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Estimating the unknown reward functions driving agents' behavior is a central challenge in inverse games and reinforcement learning. This paper introduces a unified framework for reward function recovery in two-player zero-sum matrix games and Markov games with entropy regularization. Given observed player strategies and actions, we aim to reconstruct the underlying reward functions. This task is challenging due to the inherent ambiguity of inverse problems, the non-uniqueness of feasible rewards, and limited observational data coverage. To address these challenges, we establish reward function identifiability using the quantal response equilibrium (QRE) under linear assumptions. Building on this theoretical foundation, we propose an algorithm to learn reward from observed actions, designed to capture all plausible reward parameters by constructing confidence sets. Our algorithm works in both static and dynamic settings and is adaptable to incorporate other methods, such as Maximum Likelihood Estimation (MLE). We provide strong theoretical guarantees for the reliability and sample-efficiency of our algorithm. Empirical results demonstrate the framework’s effectiveness in accurately recovering reward functions across various scenarios, offering new insights into decision-making in competitive environments. 
    more » « less
    Free, publicly-accessible full text available August 15, 2026
  2. Transformer models have achieved remarkable empirical successes, largely due to their in-context learning capabilities. Inspired by this, we explore training an autoregressive transformer for in-context reinforcement learning (ICRL). In this setting, we initially train a transformer on an offline dataset consisting of trajectories collected from various RL tasks, and then fix and use this transformer to create an action policy for new RL tasks. Notably, we consider the setting where the offline dataset contains trajectories sampled from suboptimal behavioral policies. In this case, standard autoregressive training corresponds to imitation learning and results in suboptimal performance. To address this, we propose the Decision Importance Transformer (DIT) framework, which emulates the actor-critic algorithm in an in-context manner. In particular, we first train a transformer-based value function that estimates the advantage functions of the behavior policies that collected the suboptimal trajectories. Then we train a transformer-based policy via a weighted maximum likelihood estimation loss, where the weights are constructed based on the trained value function to steer the suboptimal policies to the optimal ones. We conduct extensive experiments to test the performance of DIT on both bandit and Markov Decision Process problems. Our results show that DIT achieves superior performance, particularly when the offline dataset contains suboptimal historical data. 
    more » « less
    Free, publicly-accessible full text available August 15, 2026
  3. Representation learning in high-dimensional spaces faces significant robustness challenges with noisy inputs, particularly with heavy-tailed noise. Arguing that topological data analysis (TDA) offers a solution, we leverage TDA to enhance representation stability in neural networks. Our theoretical analysis establishes conditions under which incorporating topological summaries improves robustness to input noise, especially for heavy-tailed distributions. Extending these results to representation-balancing methods used in causal inference, we propose the *Topology-Aware Treatment Effect Estimation* (TATEE) framework, through which we demonstrate how topological awareness can lead to learning more robust representations. A key advantage of this approach is that it requires no ground-truth or validation data, making it suitable for observational settings common in causal inference. The method remains computationally efficient with overhead scaling linearly with data size while staying constant in input dimension. Through extensive experiments with -stable noise distributions, we validate our theoretical results, demonstrating that TATEE consistently outperforms existing methods across noise regimes. This work extends stability properties of topological summaries to representation learning via a tractable framework scalable for high-dimensional inputs, providing insights into how it can enhance robustness, with applications extending to domains facing challenges with noisy data, such as causal inference. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. Free, publicly-accessible full text available December 10, 2025
  5. Score-based algorithms are proposed for the quickest detection of changes in unnormalized statistical models. These are models where the densities are known within a normalizing constant. These algorithms can also be applied to score-based models where the score, i.e., the gradient of log density, is known to the decision maker. Bayesian performance analysis is provided for these algorithms and compared with their classical counterparts. It is shown that strong performance guarantees can be provided for these score-based algorithms where the Kullback-Leibeler divergence between pre- and post-change densities is replaced by their Fisher divergence. 
    more » « less